Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

نویسندگان

  • Axel Scherer
  • T. Yoshie
  • M. Lončar
  • D. Deppe
چکیده

When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic crystals provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Fabrication of optical structures has now evolved to a precision which allows us to control light within such etched nanostructures. Sub-wavelength nano-optic cavities can be designed for efficient and flexible control over both emission wavelength and frequency, and nanofabricated optical waveguides can be used for efficient coupling of light between devices. The substantial reduction of the size of optical components leads to their integration in large numbers and the possibility to combine different functionalities on a single chip, much in the same way as electronic components have been integrated for improved multi-functionality of microchips. Here we describe the use of microfabricated periodic structures, photonic crystals, to define functional nano-optic cavities for efficient confinement and emission of light, which leads to the desire for miniaturization of optical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulation of Photons by Photonic Crystals

Photonic crystals, in which the refractive index changes periodically, provide an exciting tool for the manipulation of photons and have made substantial progresses in recent years. In this presentation, I will discuss recent progresses in photonic-crystal researches including (i) two-dimensional photonic-crystal cavities and waveguides, (ii) three-dimensional photonic crystals, and (iii) two-d...

متن کامل

Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

In this article, perfectly matched layer (PML) for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method were combined to model photonic crystal fibers (PCF). For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by us...

متن کامل

Photonic Crystal Nanocavities and Waveguides

Fabrication of optical structures has evolved to a precision which allows us to control light within etched nanostructures. Nano-optic cavities can be used for efficient and flexible concentration of light in small volumes, and control over both emission wavelength and frequency. Conversely, if a· periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible ...

متن کامل

Enhanced single-photon emission from quantum dots in photonic crystal waveguides and nanocavities.

A theoretical formalism is presented to investigate enhanced radiative decay of excited dipoles in photonic crystal waveguides and nanocavities with a view to achieving efficient single-photon emission from embedded quantum dots. Surprisingly, large enhancement effects are achievable in both waveguides and nanocavities, and enhanced emission in the waveguide is shown to scale proportionally (in...

متن کامل

Planar Photonic Crystal Nanocavities with Active Quantum Nanostructures

Extreme photon localization is applicable to constructing building blocks in photonic systems and quantum information systems. A finding fact that photon localization in small space modifies the radiation process was reported in 1944 by Purcell, and advances in fabrication technology enable such structures to be constructed at optical frequencies. Many demands of building compact photonic syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003